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SUMMARY

To investigate the potential of the fourth-order compact difference scheme within the specific context
of numerical atmospheric models, a linear baroclinic adjustment system is discretized, using a variety
of candidates for practically meaningful staggered 3D grids. A unified method is introduced to derive
the dispersion relationship of the baroclinic geostrophic adjustment process. Eight popular 3D grids are
obtained by combining contemporary horizontal staggered grids, such as the Arakawa C and Eliassen grids,
with optimal vertical grids, such as the Lorenz and Charney-Phillip (CP) grids, and their time-staggered
versions. The errors produced on the 3D grids in describing the baroclinic geostrophic adjustment process
relative to the differential case are compared in terms of frequency and group velocity components with the
elimination of implementation error. The results show that by utilizing the fourth-order compact difference
scheme with high precision, instead of the conventional second-order centered difference scheme, the errors
in describing baroclinic geostrophic adjustment process decrease but only when using the combinations
of the horizontally staggered Arakawa C grid and the vertically staggered CP or the C/CP grid, the
time-horizontally staggered Eliassen (EL) grid and vertically staggered CP or the EL/CP grid, the C grid
and the vertically time-staggered versions of Lorenz (LTS) grid or C/LTS grid, EL grid and LTS grid or
EL/LTS grid. The errors were found to increase for specific waves on the rest grids. It can be concluded
that errors produced on the chosen 3D grids do not universally decrease when using the fourth-order
compact difference scheme; hence, care should be taken when implementing the fourth-order compact
difference scheme, otherwise, the expected benefits may be offset by increased errors. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Higher-order compact difference schemes have recently become popular in the field of computa-
tional fluid dynamics [1–5]. The aim of this work is to investigate the capability, potential and
suitability of such higher-order compact difference schemes within the specific context of numerical
atmospheric models. High computational costs associated with many numeric modeling projects
dictate that researchers are unable to run their models on different grids with diverse difference
schemes. Therefore, they have to rely on past research that explored the intricacies of combining
distinct modeling components. Hopefully, this will provide the groundwork for future researchers
to make informed decisions about modeling components and combinations.

The authors selected two families of schemes that are representative of commonly implemented
higher- and lower-order difference schemes. The first is composed of second-order centered schemes
(denoted by C2), which are the schemes traditionally used in atmospheric models [6–9]; the other
is based on fourth-order compact schemes (denoted by C4), as presented, for example, in Lele [3].

As described by Fox-Rabinovitz [9] the 3D grids are obtained by combining optimal horizontal
staggered grids, in this case the Arakawa C (C) and Eliassen [10] (EL) grids, with the most suitable
vertical staggered grids, the Lorenz (L) and Charney-Phillip (CP) grids, and their time-staggered
versions (LTS and CPTS) [11–15]. In total, eight 3D grids are considered in this work and these
are abbreviated to C/L, C/CP, EL/L, EL/CP, C/LTS, C/CPTS, EL/LTS and EL/CPTS [9] in
Figure 1.

In Section 2, the unified method is used to derive the dispersion properties [5] of linear baroclinic
anelasticity adjustment equations by using the C2 and C4 schemes over the eight different 3D
grids. Elimination of implement error is shown in Section 3. The errors in frequency, horizontal
group velocity (HG) and vertical group velocity (VG) of the internal inertial gravity wave relative
to the differential case (DC) on each 3D grid are compared with each other using the C2 and C4
schemes in Section 4, and finally, concluding remarks are given in Section 5.

2. COMPUTATIONAL DISPERSION PROPERTIES OF 3D GRIDS

Let us consider the simplest nonhydrostatic anelasticity system, namely, nonhydrostatic anelasticity
equations [9]

�u
�t

+ �P
�x

− f v = 0

�v

�t
+ �P

�y
− f u = 0

�w

�t
+ �P

�z
−g� = 0

��

�t
+Sw = 0

�u
�x

+ �v

�y
+ �w

�z
= 0

(1)

where u, v and w are velocity components in the x , y and z directions, respectively, p(x, y, z, t)=
p̄(z)+ p′(x, y, z, t) stands for pressure that is divided into a hydrostatic basic-state component p̄
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Figure 1. The variable configuration of 3D grids.

and a disturbance one p′; � for air density, with P= p′/�0, the denominator being a steady � under
Boussinesq approximation; �(x, y, z, t)=�̄(z)+�′(x, y, z, t) for potential temperature, which is
separated into a basic-state �̄ and a disturbance component �′; S(z)=d(ln�̄)/dz; �=�′/�0,
the denominator being a steady �̄; g for gravitational acceleration; f for Coriolis force (assumed
constant).

This system (1) is discretized over the C/L, C/CP, EL/L, EL/CP, C/LTS, C/CPTS, EL/LTS
and EL/CPTS grids, and thus the following terms need to be approximated:

v and �P/�x at a u-point,
u and �P/�y at a v-point,
� and �P/�z at a w-point,
w at a �-point, and
�u/�x,�v/�y,�w/�z in the continuity equation.
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IMPACT OF THE FOURTH-ORDER COMPACT DIFFERENCE SCHEME 109

We first define the following operators: operator R̂0 denotes an approximation of v(u) at a u(v)

gridpoint; Ĥ0, an approximation of w(�) at a �(w) gridpoint; K̂ , an approximation of �P/�x at
a u gridpoint; L̂ , an approximation of �P/�y at a v gridpoint; M̂ , an approximation of �P/�z
at a w gridpoint, and K̂ + L̂+ M̂ , an approximation of �u/�x+�v/�y+�w/�z in the continuity
equation, which is the same on all grids. For the eight grids the representations of the operators
are listed in Table I.

Setting (R̂0, Ĥ0, K̂ , L̂, M̂)=(R0,H0,K , L ,M)ei(kx+ly+mz), where k, l and m are the wavenum-
bers in the x , y and z directions, respectively. Then, the operator R0,H0 can be deduced from the
R̂0, Ĥ0 in Table I (refer to Table II for details). K̂ , L̂ and M̂ on all eight grids are estimates of the
first derivative at the midpoints and are listed in Table III. The operators K , L ,M , deduced from
K̂ , L̂, M̂ , are listed in Table IV in detail.

Using the operators mentioned above, Equation (1) with �t→0 is semi-discretized as:

�u
�t

+ K̂ (P)− f R̂0(v) = 0

�v

�t
+ L̂(P)+ f R̂0(u) = 0

Table I. R̂0 and Ĥ0 on grids C/L, C/CP, EL/L, EL/CP, C/LTS, C/CPTS, EL/LTS,
EL/CPTS and differential case (DC).

C/L C/CP EL/L EL/CP DC

R̂0 R̄x R̄y R̄x R̄y (a) (a) (a)
Ĥ0 R̄z (a) R̄z (a) (a)

C/LTS C/CPTS EL/LTS EL/CPTS

R̂0 R̄x R̄y R̄z R̄x R̄y R̄z R̄z R̄z

Ĥ0 (a) R̄z (a) R̄z

Note: R̄x , R̄ y and R̄z denote the average operator in x , y and z directions, respectively,
(refer to Table III for details), (a) denotes the exact solution.

Table II. Operators R0 and H0 on grids C/L, C/CP, EL/L, EL/CP, C/LTS,
C/CPTS, EL/LTS, EL/CPTS and differential case (DC).

C/L C/CP EL/L EL/CP

R0 T0(k)T0(l) T0(k)T0(l) 1 1

H0 T0(m) 1 T0(m) 1

C/LTS C/CPTS EL/CPTS EL/LTS DC

R0 T0(k)T0(l)T0(m) T0(k)T0(l)T0(m) T0(m) T0(m) 1

H0 1 T0(m) T0(m) 1 1
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Table III. Average operators R̄x , R̄ y, R̄z and difference operators K̂ , L̂ and M̂ of C2 and C4 [5].
Operator Concrete expression

C2
R̄x f�+1/2,�,� =( f�,�,�+ f�+1,�,�)/2

R̄ y f�,�+1/2,� =( f�,�,�+ f�,�+1,�)/2

R̄z f�,�,�+1/2=( f�,�,�+ f�,�,�+1)/2

K̂ f ′
�+1/2,�,� =( f�+1,�,�− f�,�,�)/�x

L̂ f ′
�,�+1/2,� =( f�,�+1,�− f�,�,�)/�y

M̂ f ′
�,�,�+1/2=( f�,�,�+1− f�,�,�)/�z

C4
R̄x 1

6 f�−1/2,�,�+ f�+1/2,�,�+ 1
6 f�+3/2,�,� = 2

3 ( f�,�,�+ f�+1,�,�)

R̄ y 1
6 f�,�−1/2,�+ f�,�+1/2,�+ 1

6 f�,�,�+3/2= 2
3 ( f�,�,�+ f�,�+1,�)

R̄z 1
6 f�,�,�−1/2+ f�,�,�+1/2+ 1

6 f�,�,�+3/2= 2
3 ( f�,�,�+ f�,�,�+1)

K̂ 1
22 f ′

�−1/2,�,�+ f ′
�+1/2,�,�+ 1

22 f ′
�+3/2,�,� = 12

11
f�+1,�,�− f�,�,�

�x

L̂ 1
22 f ′

�,�−1/2,�+ f ′
�,�+1/2,�+ 1

22 f ′
�,�+3/2,� = 12

11
f�,�+1,�− f�,�,�

�y

M̂ 1
22 f ′

�,�,�−1/2+ f ′
�,�,�+1/2+ 1

22 f ′
�,�,�+3/2= 12

11
f�,�,�+1− f�,�,�

�z

Note that f�,�,� denotes the variable f at gridpoint (x�, y�, z�); then, operator R̄x represents the approximation
f�+1/2,�,� of variable f at the mid-gridpoints (x�+1/2, y�, z�); operator K̂ the approximation f ′

�+1/2,�,� of

the first-order derivative f ′ of variable f at mid-gridpoints (x�+1/2, y�, z�); operators R̄ y and R̄z (L̂ and M̂)

are similar to R̄x (K̂ ) except in the different direction.

�w

�t
+ M̂(P)−gĤ0(�) = 0

��

�t
+SĤ0(w) = 0

K̂ (u)+ L̂(v)+ M̂(w) = 0

(2)

Setting wave solutions

(u,v,w, P,�)=(Ū , V̄ , W̄ , P̄,�̄)ei(k��x+l��y+m��z−n��t) (3)

where �, �, � and n are serial numbers (positive integers) of x-, y-, z- and t-dimensions, respectively.
� is the frequency.

Substituting wave solution (3) into Equation (2), and considering the abovementioned operators,
we get the following form of Equation (2) with �t→0:

−i�Ū+K P̄− f V̄ R0=0

−i�V̄ +L P̄+ f Ū R0=0
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Table IV. Operators T0(k),T0(l),T0(m),K , L and M of C2, C4 and differential case [5].
Operator Concrete expression

Differential case derivative
K = ik
L= il
M= im

C2
T0(k)=cos k�x

2

T0(l)=cos l�y2
T0(m)=cos m�z

2

K = 2i
�x sin

k�x
2

L= 2i
�y sin

l�y
2

M= 2i
�z sin

m�z
2

C4

T0(k)= 4cos(k�x/2)
3+cosk�x

T0(l)= 4cos(l�y/2)
3+cos l�y

T0(m)= 4cos(m�z/2)
3+cos m�z

K = 2i
�x × 12sin(k�x/2)

11+cos k�x

L= 2i
�y × 12sin(l�y/2)

11+cos l�y

M= 2i
�z × 12sin(m�z/2)

11+cos m�z

−i�W̄ +M P̄−g�̄H0=0

−i��̄+SW̄ H0=0

KŪ+LV̄ +MW̄ =0

Hence the dispersion relationship is solved as:

(
�

f

)2

= R2
0M

2+�2(K 2+L2)H2
0

K 2+L2+M2
(4)

Here �=√
gS/ f , a dimensionless parameter, is the ratio of the Brunt-Vaisala frequency to the

Coriolis parameter.
Subsequently, substituting the operators from Table II into Equation (4), the dispersion relation-

ships on the grids are extracted (see Table V for details).
The operators T0(k),T0(l),T0(m),K , L and M of C2, C4 and the DC in Table IV are substituted

into Table V and the dispersion relationships using C2 and C4 on the grids can be obtained (in
Table VI using C2 and in Table VII using C4).
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Table V. Dispersion relationships on grids C/L, C/CP, EL/L, EL/CP, C/LTS, C/CPTS,
EL/LTS, EL/CPTS and differential case (DC).

Grid Dispersion relationship

C/L
(

�
f

)2= T 2
0 (k)T 2

0 (l)M2+�2T 2
0 (m)(K 2+L2)

K 2+L2+M2

C/CP
(

�
f

)2= T 2
0 (k)T 2

0 (l)M2+�2(K 2+L2)

K 2+L2+M2

EL/L
(

�
f

)2= M2+�2(K 2+L2)T 2
0 (m)

K 2+L2+M2

EL/CP
(

�
f

)2= M2+�2(K 2+L2)

K 2+L2+M2

C/LTS
(

�
f

)2= T 2
0 (k)T 2

0 (l)T 2
0 (m)M2+�2(K 2+L2)

K 2+L2+M2

C/CPTS
(

�
f

)2= T 2
0 (k)T 2

0 (l)T 2
0 (m)M2+�2(K 2+L2)T 2

0 (m)

K 2+L2+M2

EL/LTS
(

�
f

)2= T 2
0 (m)M2+�2(K 2+L2)

K 2+L2+M2

EL/CPTS
(

�
f

)2= T 2
0 (m)M2+�2(K 2+L2)T 2

0 (m)

K 2+L2+M2

DC
(

�
f

)2= m2+�2(k2+l2)
k2+l2+m2

HG and VG are derived from the dispersion equation

HG=��/�k, VG=��/�m

They will be compared using graphic representations in Section 3.

3. ELIMINATION OF THE IMPLEMENTATION ERROR

To ensure no implementation error before the analysis of errors in frequency, HG and VG of
the internal inertial gravity wave relative to the DC on each 3D grid using the C2 and C4
schemes, at first the consistency is measured [16–18]. When �x,�y and �z go to zero then
every dispersion relationship in Tables VI and VII approaches the DC in Table V, i.e. the disper-
sion relationships in Tables VI and VII are mistake-free. Second, in the process of plotting the
Figures 2–4 in the next section, all figures are plotted by a software such as MatlabTM andMaple TM,
respectively, and the resulting figures are same. Hence there are no implementation errors in the
results.

4. DISCUSSION OF COMPUTATIONAL DISPERSION PROPERTIES

For simplicity, we assume that the horizontal intervals and wavenumbers are equal: �x=�y and
k= l. This indicates that only the x-axis component is given in Figures 2–4.
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Table VI. Dispersion relationships on 3D grids using C2.

Grid Dispersion relationship

C/L
(

�
f

)2= �1 cos2
k�x
2 cos2 l�y

2 +�2�2 cos2
m�z
2�1+�2

C/CP
(

�
f

)2= �1 cos2
k�x
2 cos2 l�y

2 +�2�2
�1+�2

EL/L
(

�
f

)2= �1+�2�2 cos2
m�z
2�1+�2

EL/CP
(

�
f

)2= �1+�2�2�1+�2

C/LTS
(

�
f

)2= �1 cos2
k�x
2 cos2 l�y

2 cos2 m�z
2 +�2�2

�1+�2

C/CPTS
(

�
f

)2= �1 cos2
k�x
2 cos2 l�y

2 cos2 m�z
2 +�2�2 cos2

m�z
2�1+�2

EL/LTS
(

�
f

)2= �1 cos2
m�z
2 +�2�2

�1+�2

EL/CPTS
(

�
f

)2= �1 cos2
m�z
2 +�2�2 cos2

m�z
2�1+�2

Where �1=
(
sin m�z

2

/
(�z/2)

)2
,�2=

(
sin k�x

2

/
(�x/2)

)2+
(
sin l�y

2

/
(�y/2)

)2
.

In this section the grid spacing is set at �x=100m,�z=100m [19] and for the dimensionless
parameter �=100.

In order to account for the difference between the discretized solutions on the grids and the DC,
the relative error R of frequency, HG or VG is compared, in which R is defined by

Ri
j =

Ci
j −Cdiff

j

Cdiff
j

Here the superscript i denotes the discretized solution, diff denotes the DC and the subscript j
denotes frequency, HG or VG.

The relative errors of frequency on the eight 3D grids using the C2 and C4 schemes are given in
Figure 2. For the C/CP, EL/CP, C/LTS and EL/LTS grids, the errors show the same distributive
pattern; the maximal errors are around 50% for C2 scheme and drop to 20% for C4 scheme. But,
for the C/L, EL/L, C/LTS, EL/LTS grids, though the maximal relative errors maintain the same
value of 100%, for a given vertical wavenumber the errors for C4 are less than those for C2.
In general, with regard to frequency when moving to a higher-order difference scheme, for every
grid the relative errors decrease.

The relative errors of HG on each grid using C2 and C4 schemes are displayed in Figure 3.
For the C/L, EL/L, C/CPTS and EL/CPTS grids the domain of accuracy is much enlarged
when using the C4 scheme in comparison with the C2 scheme, though the maximal errors remain
unchanged. The positive maximal relative errors on C/CP, EL/CP, C/LTS and EL/LTS grids is
50% and 20% for the C2 and C4 schemes, respectively, whereas the negative maximal relative
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Table VII. Dispersion relationships on 3D grids using C4.

Grid Dispersion relationship

C/L
(

�
f

)2= ℵ1A(k�x)A(l�y)+�2ℵ2A(m�z)
ℵ1+ℵ2

C/CP
(

�
f

)2= ℵ1A(k�x)A(l�y)+�2ℵ2ℵ1+ℵ2

EL/L
(

�
f

)2= ℵ1+�2ℵ2A(m�z)
ℵ1+ℵ2

EL/CP
(

�
f

)2= ℵ1+�2ℵ2ℵ1+ℵ2

C/LTS
(

�
f

)2= ℵ1A(k�x)A(l�y)A(m�z)+�2ℵ2ℵ1+ℵ2

C/CPTS
(

�
f

)2= ℵ1A(k�x)A(l�y)A(m�z)+�2ℵ2A(m�z)
ℵ1+ℵ2

EL/LTS
(

�
f

)2= ℵ1A(m�z)+�2ℵ2ℵ1+ℵ2

EL/CPTS
(

�
f

)2= ℵ1A(m�z)+�2ℵ2A(m�z)
ℵ1+ℵ2

Where ℵ1=
(
12sin(m�z/2)
11+cos m�z × 2

�z

)2
, ℵ2=

(
12sin(k�x/2)
11+cos k�x × 2

�x

)2+
(
12sin(l�y/2)
11+cos l�y × 2

�y

)2
,

A(k�x)=
(
4cos(k�x/2)
3+cos k�x

)2
, A(l�x)=

(
4cos(l�x/2)
3+cos l�y

)2
, A(m�z)=

(
4cos(m�z/2)
3+cos m�z

)2
.

errors for the C4 scheme are the same as for the C2 scheme of 100%. When m�z is close to �, for
a given horizontal wavenumber the relative errors of HG for C4 are less than that for C2; while,
if m�z is close to zero, for a given horizontal wavenumber the relative errors of HG for C4 are
the same as those for C2. With regard to HG, relative errors on 3D grids have not shown uniform
decrease when the traditional C2 scheme is replaced by the C4 scheme.

The relative errors of VG on each of the grid combinations using the C2 and C4 schemes are
shown in Figure 4. The negative maximal relative errors when using the C4 scheme are the same
values as the those of the C2 scheme of approximately 80% for the C/CP, EL/CP, C/LTS and
EL/LTS grids. The positive maximal error for the C4 scheme is 60%, which is the half value for
C2 (120%). When m�z is close to zero and k�x is close to �, the improvement of the high-order
scheme over the conventional scheme is obvious. Conversely, on the C/L and EL/L grids, the
maximal relative error for the C4 scheme is 800%, which is higher than that for C2 scheme (600%).
Furthermore, when m�z is close to � and k�x is close to �, the relative errors when using the
C4 scheme swell to 800%, which is more than twice the error of the C2 scheme (350%). For
the C/CPTS and EL/CPTS grids the change of error is similar to that for the C/L and EL/L
grids when the C2 scheme is replaced by the C4 scheme. Overall, with respect to the VG, when
the differential scheme is upgraded to the fourth-order compact scheme from the second-order
center-differential scheme, obvious improvement is shown only on the C/CP, EL/CP, C/LTS and
EL/LTS grids. The errors increase on the C/L, EL/L, C/CPTS and EL/CPTS grids for short
waves in both vertical and horizontal directions.
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Figure 2. The relative errors of frequency on 3D grids by using C2 (a) and C4 (b).

It was found that, in general, using the fourth-order compact difference scheme with high
precision instead of the conventional second-order centered difference scheme, for the chosen
eight 3D grids, will not universally decrease the error. The improvement is obvious only on C/CP,
EL/CP, C/LTS and EL/LTS grids, while the errors increase in specific waves on other grids.

This can be easily explained by the form of the discrete dispersion relationship (in Table V)
since the frequency appears as a ratio, and improving both the numerator and the denominator of
(in Table V) will not necessarily improve the ratio itself, so do the HG and VG.
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Figure 3. The relative errors of HG on 3D grids by using C2 (a) and C4 (b).

5. CONCLUSIONS

To understand the capability, potential and suitability of fourth-order compact difference schemes
within the specific context of numerical atmospheric models, the linear baroclinic adjustment
equations in a nonhydrostatic case are considered and discretized on eight different 3D grids with a
combination of the horizontally staggered Arakawa C and the time-horizontally staggered Eliassen
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Figure 4. The relative errors of VG on 3D grids by using C2 (a) and C4 (b).

(EL) grids and vertically staggered L, CP, LTS and CPTS grids. The unified method is introduced
to deduce the dispersion relationship by C2 and C4 schemes on the above grids.

With regard to the linear baroclinic adjustment equations, the errors of frequency, HG and
VG relative to the DC for the C4 scheme are compared with those for the C2 scheme with the
elimination of the implementation error. If the 3D grid is a staggered C or EL grid in the horizontal
and an L or CPTS staggered grid in the vertical directions, upgrading the difference scheme from
second order to the fourth order will decrease the precision of the model. If the 3D grid is a
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staggered C or EL grid in the horizontal direction and CP or LTS staggered grid in the vertical
direction, model precision will be increased.

The errors produced on the specific 3D grids cannot universally decrease by using the C4
scheme, and care should be taken where the C4 scheme is utilized; otherwise, the expected benefits
may be eroded by increased errors.

Of course, the conclusions are gained on the basis of the linear equations, but in the case of
nonlinear baroclinic primitive equations, in particular after considering the more perfect physical
process, what is the result? They need to be further studied in the future.
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